Bioconversion of Straw into Improved Fodder: Fungal Flora Decomposing Rice Straw
نویسنده
چکیده
The fungal flora decomposing rice straw were investigated all over the soil of Sharkia Province, east of Nile Delta, Egypt, using the nylon net bag technique. Sixty-four straw-decomposing species belonging to 30 genera were isolated by the dilution plate method in ground rice straw-Czapek's agar medium at pH 6. The plates were incubated separately at 5℃, 25℃ and 45℃, respectively. Twenty nine species belonging to 14 genera were isolated at 5℃. The most frequent genus was Penicillium (seven species), and the next frequent genera were Acremonium (three species), Fusarium (three species), Alternaria, Chaetomium, Cladosporium, Mucor, Stachybotrys (two species) and Rhizopus stolonifer. At 25℃, 47 species belonging to 24 genera were isolated. The most frequent genus was Aspergillus (nine species), and the next frequent genera were ranked by Penicillium (five species), Chaetomium (three species), Fusarium (three species). Each of Alternaria, Cladosporium, Mucor, Myrothecium and Trichoderma was represented by two species. At 45℃, 15 species belonging to seven genera were isolated. These were seven species of Aspergillus, two species of Chaetomium and two species of Emericella, while Humicola, Malbranchea, Rhizomucor and Talaromyces were represented by one species respectively. The total counts of fungi the genera, and species per gram of dry straw were significantly affected by incubation temperature and soil analysis (P < 0.05).
منابع مشابه
Bioconversion of Straw Into Improved Fodder: Mycoprotein Production and Cellulolytic Acivity of Rice Straw Decomposing Fungi
Sixty two out of the sixty four species of fungal isolates tested could produce both exo-β1,4-gluconase (C1) and endo-β1,4-gluconase (Cx) on pure cellulose and rice straw as carbon source in Czapek's medium. Fifty-eight and fifteen species were able to grow at 25℃ and at 45℃, respectively. Eleven species could grow at both 25℃ and 45℃ while, four species appeared only at 45℃. The most celluloly...
متن کاملBioconversion of Straw into Improved Fodder: Preliminary Treatment of Rice Straw Using Mechanical, Chemical and/or Gamma Irradiation
Crude protein (CP) content of mechanically ground rice straw into small particles by an electric grinder and reducing value (RV) and soluble protein (SP) in the culture filtrate were lower than that of the chopped straw into 5~6 cm lengths when both ground and chopped straws were fermented with Aspergillus ochraceus, A. terreus or Trichoderma koningii, at steady conditions. The reduction rate o...
متن کاملBioethanol production from rice straw residues
A rice straw - cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas g...
متن کاملRice straw-decomposing fungi and their cellulolytic and xylanolytic enzymes.
Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, whe...
متن کاملSaccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production
BACKGROUND Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial app...
متن کامل